

An Extended Hybrid Markovian and Interval Unit Commitment Considering Renewable Generation Uncertainties

Peter Luh¹, Haipei Fan¹, Khosrow Moslehi², Xiaoming Feng², Mikhail Bragin¹, Yaowen Yu¹, Chien-Ning Yu² and Amir Mousavi²

1. University of Connecticut

2. ABB

Introduction – Wind integration

- Is wind generation "free" beyond installation & maintenance?
 - Difficulties: Intermittent/uncertain nature of wind generation
 - In Spain, an unprecedented decrease in wind generation in Feb. 2012 is equivalent to the sudden down of 6 nuclear plants
 - 4 units not unusual ~ Hidden secret of intermittent renewables

1. http://breakingenergy.com/2015/03/19/wind-2000-gw-by-2030/

Existing Approaches

Deterministic Approach

- Uncertainties not explicitly considered
- Solutions not robust against realizations of wind generation
- Flexible ramping product is being investigated

Stochastic Programming

- Modeling wind generation by representative scenarios sampled from distributions
- Solution methodology
 - Branch-and-cut
 - Benders' decomposition with branch-and-cut
 - Lagrangian relaxation with branch-and-cut
- The number of scenarios: Too many or two few?

Robust optimization

- Uncertainties modeled by an uncertainty set, and the problem is optimized against the worst possible realization ~ Conservative
- Min Max ~ Computationally challenging
- Methodology: Benders' decomposition with outer approximation

• Interval optimization [2], [3], [4]

- Wind generation modeled by closed intervals
- Solutions to be feasible for extreme cases of system demand,
 transmission capacity, and ramp rate constraints ~ Conservative
- Linear and efficient via interval arithmetic
- Methodology: Benders' decomposition with branch-and-cut

• Better ways?

- 2. J. W. Chinneck and K. Ramadan, "Linear programming with interval coefficients," *Journal of the Operational Research Society*, Vol. 51, No. 2, pp. 209-220, 2000.
- 3. Y. Wang, Q. Xia, and C. Kang, "Unit commitment with volatile node injections by using interval optimization," *IEEE Transactions on Power Systems*, Vol. 26, No. 3, pp. 1705-1713, 2011.
- 4. L. Wu, M. Shahidehpour, and Z. Li, "Comparison of Scenario-Based and Interval Optimization Approaches to Stochastic SCUC," *IEEE Transactions on Power Systems*, Vol. 27, No. 2, pp. 913-921, 2012.

4

Outline

- Wind integration w/o transmission [5]
 - Stochastic UC formulation Generation based on wind states
 - Problem solved by using branch-and-cut
- Wind integration considering transmission capacities [6]
 - Markovian and interval formulation Generation based on local state
 - Numerical testing results via branch-and-cut
- An extended hybrid Markovian and interval approach (with the ABB team)
 - Generation of an isolated unit can depend on a remote wind farm
 - Solved by Surrogate Lagrangian Relaxation and branch-and-cut
 - 5. P. B. Luh, Y. Yu, B. Zhang, E. Litvinov, T. Zheng, F. Zhao, J. Zhao and C. Wang, "Grid Integration of Intermittent Wind Generation: a Markovian Approach," *IEEE Transactions on Smart Grid*, Vol. 5, No. 2, March 2014.
 - 6. Y. Yu, P. B. Luh, E. Litvinov, T. Zheng, J. Zhao and F. Zhao, "Grid Integration of Distributed Wind Generation: Hybrid Markovian and Interval Unit Commitment," *IEEE Trans. on Smart Grid*, early access since June 2015.

Stochastic Unit Commitment Formulation

- Modeling aggregate wind generation A Markov chain
 - The state at a time instant summarizes the information of all the past in a probabilistic sense for reduced complexity
 - Net system demand = System demand wind generation
- Minimize the sum of expected energy and startup/no-load costs

$$\min_{\substack{\{x_i(t)\}_{i,t}, \{p_{i,n}(t)\}_{i,n,t}\\ \sum \sum_{i=1}^{I} \sum_{t=1}^{T} \left\{\sum_{n=1}^{N} \left[\varphi_n(t)C_{i,n}(p_{i,n}(t))\right] + u_i(t)S_i + x_i(t)S_i^{NL}\right\}}$$

- s.t. system demand constraint for each state at every hour

$$\sum_{i=1}^{I} p_{i,n}(t) = P_n^D(t), \underline{\forall n, \forall t}$$

- Individual unit constraints
 - Generation capacity constraints for each state

$$x_i(t)p_{i\min} \le p_{i,n}(t) \le x_i(t)p_{i\max}, \forall i, \forall t, \forall n$$

• Time-coupling ramp rate constraints for any state transition whose probability is nonzero

$$p_{i,m}(t-1) - \Delta_i \le p_{i,n}(t) \le p_{i,m}(t-1) + \Delta_i,$$

$$\forall i, \forall n, \forall t, \forall m \in \{m \mid \pi_{mn} \ne 0\}$$
 (Ramp-up and ramp-down)

- A linear mixed-integer optimization problem
- Solution methodology Branch-and-cut

Difficulties when considering transmission

- Transmission capacities A major complication
 - With congestion, wind generation cannot be aggregated
 - Global state: A combination of nodal states ~ Too many
- What can be done?
- Key ideas: Markov + interval-based optimization
 - Local states: Wind generation state at the local node
 - Divide the generation of a unit into two components
 - Local Markovian component: Depending on the local state
 - Interval component: To manage extreme combinations of non-local states
 - Less conservative as compared to pure interval optimization
 - Much simpler than pure Markov-based optimization

Generation capacity constraints

The Markovian component: Depending on the local state n_i

$$x_{i,k}(t)p_{i,k}^{\min} \leq \boxed{p_{i,k,n_i}^M(t)} + \boxed{p_{i,k,\overline{n_i}}^I(t)} \leq x_{i,k}(t)p_{i,k}^{\max}, \forall i, \forall k, \forall t, \forall n_i, \forall \overline{n_i}$$

The interval component: Depending on the combination of non-local states \bar{n}_i

Nodal injection

$$P_{i,n_i,\overline{n}_i}(t) = \sum_{k} p_{i,k,n_i}^M(t) + p_{i,n_i}^W(t) - p_i^L(t) + \sum_{k} p_{i,k,\overline{n}_i}^I(t), \forall i, \forall i, \forall n_i, \forall \overline{n}_i$$

Markovian nodal injection $\equiv P_{i,n_i}^M(t)$ Interval nodal injection $\equiv P_{i,\overline{n}_i}^I(t)$

- System demand constraints ~ Sum of nodal injections = 0
 - Sum of nodal injections = 0 for both min/max guarantee the satisfaction for in-between demand levels

$$\sum_{i} P_{i,n_{i,\min},\overline{n}_{i,\min}}(t) = 0, \forall t \qquad \sum_{i} P_{i,n_{i,\max},\overline{n}_{i,\max}}(t) = 0, \forall t$$

- Transmission: |Power flow| ≤ Transmission capacity
 - A line flow depends on injections from many nodes and Generation Shift Factors (GSFs which can be + or -)

$$f_{l}(t) = \sum_{i} (a_{l}^{i} \cdot P_{i,n_{i},\overline{n}_{i}}(t))$$
Where are uncertainties?
$$= \sum_{i} \left[a_{l}^{i} \cdot \left(\sum_{k} p_{i,k,n_{i}}^{M}(t) + p_{i,n_{i}}^{W}(t) - p_{i}^{L}(t) \right) \right] + \sum_{i} \left[a_{l}^{i} \cdot \left(\sum_{k} p_{i,k,\overline{n}_{i}}^{I}(t) \right) \right], \forall l, \forall t$$

Markovian nodal injection $\equiv P_{i,n_i}^M(t)$ Interval nodal injection $\equiv P_{i,\overline{n}_i}^I(t)$

 Determine extreme flows from wind uncertainties – contained in Markovian nodal injections – by considering signs of GSFs and extreme Markovian nodal injections

$$\sum_{i:a_{i}^{i}>0} \left[a_{l}^{i} \cdot \min_{n_{i}} P_{i,n_{i}}^{M}(t)\right] + \sum_{i:a_{i}^{i}<0} \left[a_{l}^{i} \cdot \max_{n_{i}} P_{i,n_{i}}^{M}(t)\right] \leq \sum_{i} \left[a_{l}^{i} \cdot P_{i,n_{i}}^{M}(t)\right]$$

Ramp rate constraints

For possible states, state transitions, and $p_{i,k,\overline{n}_{i,\min}}^{I}(t)$ and $p_{i,k,\overline{n}_{i,\max}}^{I}(t)_{0}$

- The objective function
 - With state probabilities and a few extreme realizations
 - Want to approximate the expected cost of all realizations w/o much complexity
 - Extremes only may not reflect the majority of realizations
 - Include a "typical realization" (e.g., the expected realization)
 - A set of deterministic constraints

$$\min \sum_{t=1}^{T} \sum_{i=1}^{Ki} \sum_{k=1}^{Ki} \left\{ \sum_{n_{i}=1}^{Ni} \left[w_{n_{i},m_{i}}(t) C_{i,k} \left(p_{i,k,n_{i}}^{M}(t) + p_{i,k,m_{i}}^{I}(t) \right) + w_{n_{i},M_{i}}(t) C_{i,k} \left(p_{i,k,n_{i}}^{M}(t) + p_{i,k,M_{i}}^{I}(t) \right) \right] + w_{E}(t) C_{i,k} \left(p_{i,k,E}(t) \right) - u_{i,k}(t) S_{i,k} + x_{i,k}(t) S_{i,k}^{NL} \right\}$$

$$(7)$$

Weight for the expected realization, adding up to 1

Solution methodology – Branch-and-cut

Example 1 – IEEE 30-bus with 2 wind farms

- Data of two wind sites from April to September in 2006 [7]
 - Wind penetration level: 40%
 - W/o considering wind curtailment and load shedding
 - 1,000 Monte Carlo simulation runs
- Our approach provides 5.25%
 lower simulation cost than
 pure interval optimization
- Our approach is the most accurate in the sense of smallest APE*

	Trade-off:	Solution	robustness
--	------------	----------	------------

Approach		Deter.	Interval	Ours	
Optimi-	CPU time	2s	53s	1min53s	
zation	Cost (k\$)	248.659	280.672	253.403	
UC cost (k\$)		89.461	67.715	65.216	
a	E(Cost) (k\$)	315.451	263.787	250.626	
Simula- tion	APE	21.173%	6.401%	1.108%	
	STD (k\$)	74.058	33.117	34.613	

and conservativeness, modeling accuracy, and CPU time

Absolute percentage error* = |Optimization cost - simulation cost| / simulation cost × 100%

7. The National Renewable Energy Laboratory, Eastern Wind Dataset, 2010, [Online]. Available: http://www.nrel.gov/electricity/transmission/eastern_wind_methodology.html.

Outline

- Wind integration w/o transmission
- Wind integration with transmission capacity constraints
 - Can be conservative if a big unit does not have a local wind farm ⇒ Interval Approach
- An extended hybrid Markovian and interval approach
 - Generation of an isolated unit can depend on a remote wind farm
 - Solved by a synergistic integration of Surrogate Lagrangian relaxation [8] and branch-and-cut [9]
 - Numerical testing results
- 8. M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu, and G. A. Stern, "Convergence of the Surrogate Lagrangian Relaxation Method," *Journal of Optimization Theory and Applications*, Vol. 164, No. 1, January 2015, pp. 173-201.
- 9. M. A. Bragin, P. B. Luh, J. H. Yan, and G. A. Stern, "Novel Exploitation of Convex Hull Invariance for Solving Unit Commitment by Using Surrogate Lagrangian Relaxation and Branch-and-cut," to appear in *Proceedings of the IEEE Power and Energy Society 2015 General Meeting*, Denver, CO, USA

Key Ideas

- Allow an isolated unit to depend on a remote wind farm
 - Generation: A Markovian component + an interval component
- Modifications in the formulation?
 - System Demand
 - Ramp rates
 - Transmission capacity ~ Requiring the coordination of a isolated unit with a remote wind farm at a different bus
 - \Rightarrow More complicated
- ⇒ The Extended Formulation

- Simplified extreme Markovian flows - Can be conservative

$$\begin{aligned} & \min f_{l}^{M}(t) = \sum_{i:a_{l}^{i} > 0} \left[a_{l}^{i} \cdot \min_{n_{i}} P_{i,n_{i}}^{M}(t) \right] + \sum_{i:a_{l}^{i} < 0} \left[a_{l}^{i} \cdot \max_{n_{i}} P_{i,n_{i}}^{M}(t) \right] \\ & + \sum_{k:a_{l}^{k} > 0} \left[a_{l}^{k} \cdot \min_{n_{k}} P_{k,n_{k}}^{M}(t) \right] + \sum_{k:a_{l}^{k} < 0} \left[a_{l}^{k} \cdot \max_{n_{k}} P_{k,n_{k}}^{M}(t) \right] \\ & + \sum_{j:a_{l}^{j} > 0} \left[a_{l}^{j} \cdot \max_{n_{k}} P_{j,n_{k}}^{M}(t) \right] + \sum_{j:a_{l}^{j} < 0} \left[a_{l}^{j} \cdot \min_{n_{k}} P_{j,n_{k}}^{M}(t) \right] \end{aligned}$$

$$k: \text{ remote wind farms}$$

$$+ \sum_{j:a_{l}^{j} > 0} \left[a_{l}^{j} \cdot \max_{n_{k}} P_{j,n_{k}}^{M}(t) \right] + \sum_{j:a_{l}^{j} < 0} \left[a_{l}^{j} \cdot \min_{n_{k}} P_{j,n_{k}}^{M}(t) \right]$$

 n_k^* for nodes k and j can be different, but can be derived

- Interval flows
$$f_{l,c}^{I}(t) = \sum_{i} \left[a_{l}^{i} \cdot P_{i,c}^{I}(t) \right] + \sum_{i} \left[a_{l}^{j} \cdot P_{j,c}^{I}(t) \right]$$
 Interval flow has 2 possible combinations denoted as c

- How to solve the problem?
- ⇒ Decomposition and coordination of Lagrangian relaxation

Lagrangian

$$\begin{split} L &= \sum_{t=1}^{T} \{ \sum_{i=1}^{I} [p_i(t) \cdot C_i + x_i(t) \cdot S_i^{NL} + u_i(t) \cdot S_i] \\ &+ \lambda(t) (\sum_{i} P_i) + \sum_{l} [\mu_{l,-}(t) (-f_l^{\max} - f_l(t))] + \sum_{l} [\mu_{l,+}(t) (f_l(t) - f_l^{\max})] \} \end{split}$$

• Individual unit subproblems

$$\min_{\substack{x_i(t) \\ p_i(t)}} L, \text{ with } L \equiv \sum_{t=1}^{T} \{ [p_i(t) \cdot C_i + x_i(t) \cdot S_i^{NL} + u_i(t) \cdot S_i] \}$$

$$+\lambda(t)P_{i} + \sum_{l=1}^{L} \mu_{l,+}(t)(a_{l}^{i} \cdot P_{i}(t)) - \sum_{l=1}^{L} \mu_{l,-}(a_{l}^{i} \cdot P_{i}(t))\}$$

Dual problem

$$\max_{\lambda,\mu} \Phi(\lambda,\mu), with \, \Phi(\lambda,\mu) \equiv \sum_{i=1}^{I} L_i^*(\lambda,\mu)^{\bullet}$$

$$-\sum_{t=1}^{T}\sum_{l=1}^{L}(\mu_{l,+}(t) + \mu_{l,-}(t))f_{l}^{\max}$$

s.t.
$$\mu_{l,+}(t) \ge 0, \mu_{l,-}(t) \ge 0$$

Standard subgradient methods require L to be fully optimized

- L is difficult to fully optimize
- $-\lambda$ can suffer from zigzagging
- Convergence proof and step size require q^*

Surrogate Lagrangian Relaxation

- Develop a new method, prove convergence, and guarantee practical implementability
 - Without fully optimizing the relaxed problem (s.t. the surrogate optimality condition) and without requiring q^*

1)
$$c^k \sim \prod_{i=1}^k \alpha_i \to 0$$

2) $\lim_{k \to \infty} \frac{1 - \alpha_k}{c^k} = 0$ Without requiring $q^*!$

• One possible example of α_k that satisfies conditions 1)

and 2):
$$\alpha_k = 1 - \frac{1}{M \cdot k^p}$$
, $0 , $M > 1$, $k = 1, 2, ...$$

- At convergence, the surrogate dual value approaches q^*
 - ~ valid lower bound on the feasible cost

~ Overcomes all major difficulties of traditional LR

Schematic of Surrogate Lagrangian Relaxation

Difficulties of Standard Branch-and-Cut

- Branch-and-cut (B&C) can suffer from slow convergence because
 - Facet-defining cuts and even valid inequalities that cut areas outside the convex hull are problem-dependent and are frequently difficult to obtain
 - When facet-defining cuts are not available, a large number of branching operations will be performed
 - No "local" concept ⇒ Constraints associated with one subproblem are treated as global constraints and affect the entire problem

Synergistic Combination with Branch-and-cut

- SLR relaxation and B&C are synergistically combined to simultaneously exploit separability and linearity:
 - Relax coupling constraints (system demand/transmission)
 - Solve a subproblem using branch-and-cut w/ warm start
 - The complexity is drastically reduced
 - Update multiplies by SLR convergence w/o q^*
- Why is the new method effective?
 - Complexity of the algorithm is lower than that of B&C
 - Convex hulls for a subproblem do not change
 - Cuts for subproblems are effective
 - Feasible solutions can be effectively obtained

 $L = \sum_{i=1}^{I} \left\{ \sum_{t=1}^{T} \left(C_i(p_i(t), t) + S_i(t) - \lambda(t) p_i(t) \right) + \sum_{t=1}^{T} \lambda(t) P_d(t) \right\}$

Implementation of SLR + Branch-and-Cut

- Testing system IEEE 30-bus 41-branch 24-period
 - Relax all coupling system demand and transmission capacity constraints
 - Form individual unit subproblems s.t. unit-wise constraints
 - Configurations: 10 wind farms, 10 co-located units, 2 noncolocated cheap units
- Implementation In CPLEX 12.6.0.0 on Dell Precision M4500
 - SLR implemented using ILOG Script for OPL
 - Flow control, load data, generate models, update multipliers, warm start ...
 - Subproblems solved by the CPLEX using branch-and-cut
 - Multipliers are initialized according to priority list
 - System marginal costs for extreme and expected system demands timed the weights as those in the objective function

Units' characteristics

Unit #	pmin	pmax	Offer price	Start-up cost	Associated wind farm			
	Co-located units							
1	5	157	62.6	786.8	1			
2	8	100	56.7	945.6	2			
3	14	157	62.6	700	3			
4	22	100	56.7	800	4			
5	10	60	42.1	1000	5			
6	3	157	62.6	850	6			
7	15	100	56.7	950	7			
8	10	80	41.1	1243.5	8			
9	5	157	62.6	600	9			
10	25	100	56.7	750	10			
Non-co-located units								
11	10	80	37.2	900	2			
12	10	90	39	1000	8			

Wind farms' characteristics

 All wind farms are assumed to be identical for each level of wind penetration

Wind penetration level	Pmax for wind farm
5%	4 MW
15%	12 MW
25%	20 MW

- A penalty of \$5000/MWh on wind curtailment is incurred beyond a certain threshold
 - For example, for the 25% case, if 10 MW out of 20 MW available are not used, then penalty is incurred

Testing results

Consider 5% wind penetration

		Non-extended case		Extended case		
Method		SLR+B&C	B&C	SLR+B&C	B&C	
Lower bound (k\$)		292,508.74	294516.13	291,740	295328.95	
Feasible cost (k\$)		314,411	N/A**	316,478	N/A	
G	Gap		N/A	7.92%	N/A	
Clock	Iterations	189	1200	310	1200	
time* (s)	Heuristics	231	1200	110	1200	
Wind Curtailment (k\$)		0	N/A	0	N/A	
Load Shedding (k\$)		656.49	N/A	688.17	N/A	

Clock time* : solving time + other time (13 iterations)

**: B&C cannot solve because of shortage of power from conventional generators

$$\alpha_k = 1 - \frac{1}{M \cdot k^p}, \ p = 1 - \frac{1}{k^r}, \ r = 0.1, \ M = 30, \ k = 1, 2, \dots$$

Testing results

Consider 15% wind penetration

		Non-extended case		Extended case	
Method		SLR+B&C	B&C	SLR+B&C	B&C
Lower bound (k\$)		268,975	265,020.46	269,617	N/A**
Feasible cost (k\$)		284,455	331,835.67	283,619	N/A
G	Gap		20.14%	4.93%	N/A
Clock	Iterations	288	1200	257	N/A
time* (s)	Heuristics	12	1200	43	I N /A
Wind Curtailment (k\$)		0	0	0	N/A
Load Shedding (k\$)		6,376.07	1,243.68	3,522.8	N/A

Clock time* : solving time + other time (16 iterations)

**: CPLEX was out of memory and computer froze

$$\alpha_k = 1 - \frac{1}{M \cdot k^p}$$
, $p = 1 - \frac{1}{k^r}$, $r = 0.1$, $M = 30$, $k = 1, 2, ...$

Testing results

Consider 25% wind penetration

		Non-extended case		Extended case		
Method		SLR+B&C	B&C	SLR+B&C	B&C	B&C
Lower bound (k\$)		266,304	250,447.8	244,120	241,892.04	241,997
Feasible cost (k\$)		267,379	312,028.4	258,026	1,766,826.7	253,726
Gap		0.4%	19.73%	5.83%	86.31%	4.62%
Clock time* (s)	Iterations	290	1,200	720	3,600	12,890
	Heuristics	10		480	(1 hour)	(3h35min)
Wind Curtailment (k\$)		0	0	25.3105		0.04
Load Shedding (k\$)		4,151.33	2,522.75	2,857.89		1,074.4

Clock time* : solving time + other time (16 iterations)

$$\alpha_k = 1 - \frac{1}{M \cdot k^p}$$
, $p = 1 - \frac{1}{k^r}$, $r = 0.1$, $M = 30$, $k = 1, 2, ...$

Conclusion

- An important but difficult issue with no practical solutions
- A major breakthrough for effective grid integration of intermittent wind and solar, with key innovations:
 - Markov processes as opposed to scenarios to model wind generation for reduced complexity
 - Markov + interval-based optimization to overcome the complexity caused by transmission capacity constraints
 - The extended approach further reduces the conservativeness
- Opens a new and effective way to address stochastic problems w/o scenario analysis or over conservativeness
- The innovative SLR + B&C opens a new direction on solving large mixed-integer linear programming problems

Thank You!